Radiactividad Artificial / Transmutación nuclear

Radiactividad Artificial / Transmutación nuclear

3 marzo, 2017 0 By Ensambledeideas

El campo de la química nuclear sería algo estrecho si el estudio se limitara a los elementos radiactivos naturales. Un experimento llevado a cabo por Rutherford en 1919, sin embargo, sugirió la posibilidad de observar la radiactividad artificial. Cuando una muestra de nitrógeno se bombardeó con partículas alpha, se llevó a cabo la siguiente reacción:

Se produjo un isótopo de oxígeno-17 con la emisión de un protón.

La reacción presentada puede abreviarse como:

Puede observarse que la partícula que se bombardea se escribe primero en el paréntesis y después la partícula que se emite.

Esta reacción demostró por primera vez la posibilidad de convertir un elemento en otro (es decir, la llamada transmutación nuclear).

Las transmutaciones nucleares difieren del decaimiento radiactivo en que la última es un proceso espontáneo; en consecuencia, en las ecuaciones de descomposición sólo aparece un reactivo en el lado izquierdo de la ecuación.

Aunque los elementos ligeros generalmente no son radiactivos, pueden serlo si se bombardea sus núcleos con partículas apropiadas. El isótopo radiactivo de 14C, por ejemplo, puede prepararse bombardeando nitrógeno-14 con neutrones. Este proceso se explicará más detalladamente en el próximo eje porque será de vital importancia para la comprensión de los temas a tratar.

Por su parte, el tritio, hidrógeno de A = 3, se prepara mediante el siguiente bombardeo:

El tritio se descompone con la emisión de partículas β:

Muchos isótopos sintéticos se preparan usando neutrones como proyectiles. Esto es particularmente conveniente porque los neutrones no llevan cargas y por lo tanto no son repelidos por los núcleos. La situación es diferente cuando los proyectiles son partículas cargadas positivamente; por ejemplo, cuando se utilizan protones o partículas α, como en:

Para reaccionar con el núcleo de aluminio, las partículas alpha deben tener una considerable energía cinética para poder superar la repulsión electrostática entre ellas mimas y los átomos blancos del bombardeo.

Te recomendamos la lectura previa de los primeros tres artículos de la serie Radiactividad:

RADIACTIVIDAD

RAYOS ALPHA, BETA Y GAMMA 

Serie de decaimiento radiactivo

Tiempo de Vida Media


Fuentes:

Chang, Raymond (4ta. Edición. 1992). Química, p. 40, pp. 561-562, pp. 962-969, pp. 982-985. Chile: Editorial Mc. Graw Hill.
Franco, Ricardo; Arriazu, Francisco López; Serafini, Gabriel D. (2008). Física y Química. (Intercambios de energía. Estructura y transformaciones de la materia.), pp. 161-164. Buenos Aires, Argentina: Editorial Santillana.
Rolando, Aída; Jellinek, Mario René (Febrero, 1995). Química 4, pp. 441-460. Bogotá, Colombia: A-Z Editora.
Sears, Francis W.; Zemansky, Mark W. (6ta Edición, 1988). University Physics, pp. 1040-1048, pp. 1064-1065. Estados Unidos: Addison-Wesley.
Young, Hugh D.; Freedman, Roger A. (12da. Edición. 2009). Física Universitaria, con física moderna (Volumen 2), pp. 1478-1492. México: Pearson Educación.

(Visitado 326 veces, 1 visitas en el día de hoy.)