¿Cómo hacer ejercicios de CONSERVACIÓN DE ENERGÍA MECÁNICA?

¿Cómo hacer ejercicios de CONSERVACIÓN DE ENERGÍA MECÁNICA?

20 junio, 2018 0 By Ensambledeideas

Para realizar un ejercicio de física sobre CONSERVACIÓN DE ENERGÍA MECÁNICA, debemos tener en cuenta algunas cosas:

Conceptos principales sobre CONSERVACIÓN DE ENERGÍA MECÁNICA

  • (I) La energía mecánica (\(E_m \) ) es igual a la suma de energía potencial gravitatoria ( \( E_{p_g} \) ) más la energía cinética ( \( E_c \) ). Es decir:  \( E_m = E_{p_g}+E_c) \) .
  • (II) La energía mecánica se conserva SÓLO si no hay fuerzas de rozamiento actuando, tales como la fuerza del rozamiento con el aire o con el piso.
  • (III) Consideraremos el valor de la fuerza de gravedad en la Tierra como \( \left | g \right |=10 \frac{m}{s^{2}} \) (sólo para hacer más fáciles las cuentas). En caso de que tú lo hagas con el valor de \( \left | g \right |=9,8 \frac{m}{s^{2}} \) , el procedimiento es el mismo. Sólo cambia el valor de \( \left | g \right | \) por el que tú tomes. De acuerdo con esto, si estamos hablando de un ejercicio que considera que estamos en la Luna, por ejemplo, el valor de \( \left | g \right | \) corresponderá a \( 1,6 \frac{m}{s^{2}} \) .
  • (IV) La teoría relacionada con la conservación de energía mecánica nos dice que \( \Delta E_m=0 \).

Esto significa que:

\(\Delta E_m=0 \)
\(E_{m_f}-E_{m_i}\)
\(E_{m_f}=0+E_{m_i}\)
\(E_{m_f}=E_{m_i}\)

¿Qué significa esto? Que la energía mecánica final siempre es igual a a la energía mecánica inicial. En otras palabras, ¡La energía mecánica se conserva siempre en todo el movimiento! Presten mucha atención a esta frase, pues será de gran utilidad.

Conservación de Energía Mecánica.
El estudio de la conservación de la energía es importantísimo para comprender los cambios experimentados en una montaña rusa, tanto ideal como real.

Una vez que tuvimos en cuenta esas pequeñas aclaraciones, es hora de realizar algunos ejercicios:

Ejercicios Prácticos de Conservación de Energía Mecánica

Actividad 1

1. ¿Con qué velocidad toca el suelo una pelota que se deja caer desde 20m de altura?

Típico ejercicio de examen de conservación de energía mecánica. Para resolverlo, consideraremos que no hay fuerzas de rozamiento con el aire durante la caída.

Veamos la siguiente representación de lo que expresa el enunciado:

En el punto más alto, la pelota se deja caer. Es importante aclarar que “se deja caer” es equivalente a decir que la velocidad inicial de la pelota es 0, es decir: \(v_i=0 \) . En ese punto, la energía mecánica estará dada por:

\( E_{m_i}=E_{p_g}+E_c \)

Como \( E_{p_g}=m\cdot g\cdot h \) y \( E_c=\frac{1}{2}\cdot m\cdot v^2 \) , entonces:

\( E_{m_i}=m\cdot g\cdot h+\frac{1}{2}\cdot m\cdot v^2 \)

Sin embargo, como la velocidad inicial de la pelota es 0, no hay energía cinética en el punto más alto: sólo existe energía potencial gravitatatoria:

\( E_{m_i}=m\cdot g\cdot h \)

Por otro lado, en el punto más bajo:

\( E_{m_f}=E_{p_g}+E_c \)

\( E_{m_f}=m\cdot g\cdot h+\frac{1}{2}\cdot m\cdot v^2 \)

Pero en el punto más bajo, no existe energía potencial gravitatoria dado que la altura es 0, es decir: \(h=0\). Por ello, nos queda que:

\( E_{m_f}=\frac{1}{2}\cdot m\cdot v^2 \)

Aplicando la conservación de energía mecánica, descripta en (IV), tenemos que:

\( E_{m_f}=E_{m_i} \)
\( \frac{1}{2}\cdot m\cdot v^2=m\cdot g\cdot h \)

Como debemos hallar \(v\), despejamos:

\( v^{2}=\frac{m\cdot g\cdot h}{\frac{1}{2}\cdot m} \)
\( v^{2}=\frac{g\cdot h}{\frac{1}{2}} \)
\( \left | v \right |=\sqrt{\frac{g\cdot h}{\frac{1}{2}}} \)

Colocando los datos:

\( \left | v \right |=\sqrt{\frac{10\frac{m}{s^{2}}\cdot 20m}{\frac{1}{2}}}=20\frac{m}{s} \)

¡Y listo!

Actividad 2

2. Dada la siguiente situación:

Conservación de Energía Mecánica.

Datos:
Masa del carrito = 8 kg.
X (estiramiento del resorte) = 0,81 metros.
K (constante de elasticidad) = 10,2 N/m

Calcular:

  • La energía potencial elástica del carrito en el punto A.
  • La energía cinética del carrito cuando éste está quieto (v=0 m/s)
  • Calcular la energía potencial gravitatoria del carrito en el punto A y en el punto B.
  • Calcular la energía mecánica del carrito en el punto A. Tener en cuenta que la velocidad en el punto A es 0 m/s.
  • Calcular la energía mecánica del carrito en el punto B.

1. a) La energía potencial elástica del carrito (\(E_{p_{e}} \)) en el punto A viene dada por la expresión: \(E_{p_{e}}=\frac{1}{2}\cdot k\cdot X^{2}\), siendo k la constante elástica del resorte (k=10,2 N/m) y X, el estiramiento del resorte (X=0,81m). Reemplazando los valores:

\(E_{p_{e}}=\frac{1}{2}\cdot k\cdot X^{2}\)
\(E_{p_{e}}=\frac{1}{2}\cdot 10,2 \frac{N}{m} \cdot (0,81m)^{2}\)
\( E_{p_{e}} =3,35J\)

b) La energía cinética (\(E_{c} \)) del carrito en cualquier punto viene dada por la expresión \(E_{c}=\frac{1}{2}\cdot m\cdot v^{2}\), siendo m la masa del cuerpo y v, la velocidad. Como el cuerpo, según el enunciado, está quieto, entonces la energía cinética vale 0J.

c) La energía potencial gravitatoria (\( E_{p_{g}} \)) del carrito en cualquier punto viene dada por la expresión \(E_{p_{g}}=m\cdot g \cdot h\), donde m es la masa del cuerpo, g es la aceleración de la gravedad (\(g=9,8\frac{m}{s^{2}}\) y h es la altura del cuerpo. Según el enunciado, la masa del cuerpo es de 8kg.

En el punto A, la altura es de 20m, por lo que la energía potencial gravitatoria será:

\( E_{p_{g}}=m\cdot g \cdot h \)
\( E_{p_{g}}=8kg\cdot 9,8\frac{m}{s^{2}} \cdot 20m \)
\( E_{p_{g}}= 1568J\)

Mientras que en el punto B, en donde la altura es 0m, la energía potencial gravitatoria será de 0J, puesto que no hay altura.

d) La expresión de la energía mecánica es: \( E_{m}= E_{p_{g}} + E_{c} + E_{p_{e}} = m\cdot g \cdot h + \frac{1}{2}\cdot m\cdot v^{2} + \frac{1}{2}\cdot k\cdot X^{2} \). Sabiendo que, en el punto A, la altura es de 20m y la velocidad del carrito es de 0 m/s, entonces:

\( E_{m}= E_{p_{g}} + E_{c} + E_{p_{e}}\)
\(8kg\cdot 9,8\frac{m}{s^{2}} \cdot 20m + \frac{1}{2}\cdot 8kg\cdot (0\frac{m}{s})^{2} + \frac{1}{2}\cdot 10,2\frac{N}{m}\cdot (0,81m)^{2} \)
\( E_{m}= 1571,35J \)

Este valor también podría haber sido hallado sumando los resultados obtenidos en los puntos anteriores.

e) La energía mecánica se conserva en toda la trayectoria, por lo que la energía mecánica en B será igual a la energía mecánica en A: \( E_{m_{B}}= 1571,35J \)

Más información

Te sugerimos la lectura del artículo “La conservación de la energía en la naturaleza y la sociedad” para más información sobre los contenidos desarrollados aquí.

Fuente

Sears y Zemansky. Hugh D. Young, Roger A. Freedman, A. Lewis Ford; “Física universitaria con física moderna 2”; Ed. Pearson Educación; disponible en: https://www.pearsonenespanol.com/mexico/educacion-superior/sears_index/sears-fisica-universitaria-2

(Visitado 98 veces, 1 visitas en el día de hoy.)